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REBELS Categ@y Gas to Power/Liquid

. . Sample Products*

Description Symbol unit Pentane Bezene Methanol |
Reaction 5CH=GH,, + 4 6CH=GHs + 98 CH, + 0.5Q=CHOI
Number of electrons n mol/mol 8 18 2
Faraday Constant F C/mol 96,485 96,485 96,4841
Membrane Active Area A cnf 100 100 100
Cell unit thinkness t cnf 1 1 1
Current density j Alcnt 0.100 0.100 0.100
Molar mass product M g/mol 72.2 781 32
Density of product ’ g/mL 0.626 0.877 0.794
Enthalpy of combustion neH® kJ/mol 3509 3273 715
Volumetric product output Py=jAMK ~ (k&400) mL/D 129 44 181
Areal product output Pl 2.H°InF(+70.8) bpd/cm2 6.42E-06 2.66E-06 5.23E-0
Process Intensity t L I}':laojlnFt (x28,317+70.8)bpd/ft3 0.18 0.08 0.15
Cell material cost Ca $/cm? 0.50 0.20 0.50
Cell cost per product output Ca/P A $/bpd 77,870 75,136 95,54

* ARPAEFOANo0. DEFOA0001026, page 21

Functions/Project Roles

MSRI Greg Tao Cell design; cathode enhancement; fabrication processgrial
integration; experimental evaluatioffoCdemonstration, T2M

WVU Xingbo Liu Highly performingredoxstable anode development; anodeatalyst
implementation

NCSU Fanxing Li Methane to methanol catalyst developmer@TLprocess simulation

EcoCatalytic  John Sofranko Methane to methanol catalyst developmempst analysis; T2M
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Materials & Systems Research Inc.

MSRI specializes materials and electrochemicahgineeringor power generation and energy
storageapplicationsfuel cellsélectrolyzersstorage batteriesand thermoelectric converters
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Fuel Cell/Electrolyzer

U from off-the-shelf powders
Both planar and tubular cells

U Percell active area varying from 1,
400 cn?

U Stacks/bundles from 10 W to 4 kW

3 (=4

Sodiumbeta Battery

U Advanced Naconducting ceramic electrolyte
U Unique battery designs (planar & tubular)
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Outline

U Project Overview

U Up-to-Date Accomplishments

o EC Materials Development

U Summary
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Objective and Challenges

U Objective: to develop an intermediatéemperature (IT) electrogenerative device for
converting natural gas electrochemically irglectricity andiquid fuelcosteffectively.
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U0 Key Challenges Addresse = Pt Fuel Wax

0 Electrogenerative cell design enabling operating directly on dry methane

o Electrogenerative cell materials development for operating at intermediate temperatt

V Methane oxidation catalysts; anode materials; cathode performance enhancement; mater
integration

o Advanced cell manufacturing process development:
V Costeffective manufacturing process; dissimilar cell materials integration

o) Sca|inng and proo.fof-concept demonstration !: http://www.oilgasmonitor.com/monetizatiomaturatgas/2453/
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Value Proposition

: | e O Natural gas flaring

o PreBakken S oS L A 28% of North Dakota NG production is flared
S R T into atmosphere (~ 250 million cubic feet/day

A Global NG flaring > 5 quadrillion BTU/year

A > 300 million tons of Cfemission (or
equivalent to 70 mission cars emission)

A - equivalent to 750 billion kWh of electricity

el
**

O Turning the flare gas to value added
products

A amall scale modular reactor for flare gas (a
negative markewvalue gasinto fuel and
electricity (~1000 bpd)

A Mobile reactor, and easy integration WAITG
process

A Minimize financial risks

A Flexible operation for fuel & power
cogenerationg suitable for remote site
applications (well pads), minimu@&M costs

s

1WorldBank, Global gas flaring reduction partnership, 2012; httpaiv.worldbank.org/en/programs/zergoutine-flaring-by-2030
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Gas to Liquids

FischefTropschGTLProcessa. be Klerk, U of Albany, 2011

|
| Syngas Product E i
- _‘ |
o generation recovery i Fuels
feed || I and
Gas Syngas- FC | Chemicals
| cleaning to-syncrude refining I
I ____________ :
1 Synthesis gas Synthesis Synthetic product
production (gas loop) refining

A drop-in reactor for smaHlscaleGTlL, replacing >50% cost?

GTLEconomics

GTL Facility Company Capacity Capital Cost!®
Pearl Shell 140,000 bpd®® | ~$110,000/bpd
Escravos Sasol-Chevron | 33,000 bpd®l ~ $180,000/bpd
Sasol | expansion | Sasol --- ~ $200,000/bpd

* Payback = $150,000/bpd = $80/boe = 5 years

* FT-GTL is economically attractive at current market prices
3. A. De Klerk,ARPA-E workshop, Houston TX, January 2012; 4. P&l 7 an overview. Shell 2012; 5. Reddall Thomson Reuters, Feb. 24, 2011
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Challenges

U Key Challenges Addressed
o0 Electrogenerativeell designenabling operating directly on dry methane

o Electrogenerativeell materialsdevelopment for operating at intermediate temperature

V Methane oxidation catalysts; anode materials; cathode performance enhancement; mater
integration

o Advanced cell manufacturing process development:
V Costeffective manufacturing procesdissimilar cell materials integration

o0 Scalingup and proofof-concept demonstration
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Electrogenerative Cell Design
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Tubular MetalSupported Electrogenerative Cell

Unique cell design would be capable of integrating stat¢éhe-art fuel cell technologies,
advanced methanexidation catalyst developmentyith the costeffective cell
manufacturing process development.
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Electrogenerative Cell Materials
Development:
cathode +anode + anode methane catalyst
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ASR Breakdown

Electrode Polarization 68.6%

Anode ohmic

4.9%
17% YSZ-based ohmic

Cathode ohmic

Overpotential breakdown at a cell level for a typicelSRlanode-supported cell

Metal-supported TMSEC < 50TC

bao wpipfie bhoad booRd bedier bl b o b o b lofde 4 ok

BEOE
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Cathode Development
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500°C, respectively.
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Cathode Scaleip to 10x10crH

.01 30 T T .
I'Ni-anode supported 4'x4" GDC eIectronte cell (100 cm 5 | Bl anode ohmic ASR
150% H,-N, / air @ utilization of 40%/40% i & B GOC electrolyte ohmic ASR
1 N I ce!l total ASR
E - =
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A single planar,Ni+YSZ-supportedSOFC(100 cn?) tested at 550°C, 600°C, a@bl0°C
w/50% H,-N, as the fuel. BotlJ; & U, fixed @ 40%
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Design of Highly Performing Anodes

Desirable anode structure:

g

Routes:
Sl CHy 1 phase(very good MIEC & cat.)
Ceramic anode materials " ‘&3 co/co, o
\ & H,/H,0 2 phaseq , + ; & cat.)
or/and \ - (co-sintered ml_xpowders
) . v or one layer coating the other)
Nano-catalyst infiltrated IS o st or
A 3 phaseq2 phases fhano
anodes . .
! - Eiedmiye catalyst decorations)

Super anode for operating at T ~ 500°C

o SuperMIECc high ionic and electronic conductivity, and excellent catalytic
activity (essentiallydeclined ; at low T + declined,, at low Pg + slowed
kinetics of surface reaction at low T)

0 Super catalyst not too fast cause coking, but active enough for partial
oxidation of methane (Ni is good catalyst but risk coking, whereas other
catalysts are not active enough)

<
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Promising Anode Systems

Full-ceramic anodes with record low Rp ( g c?nin H, @600°C: A=0.87; B=0.52; C=0.45;
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Methane Catalyst Development

U Methane catalytic oxidation by active oxygen species into C1
oxygenates

DEEQR®O U 800 0 ®QE 160 0 6 '00 '000 ®»'Q
U Synthesis methods fosupported metal oxide catalysts

C Incipient wet impregnation

C Thermal spreading

U Catalytic testingdirect conversion of methane to C1 oxygenates was carried ou
iIn a continuous flow fixetbed reactor with cefeed mode (latm) & Redox mode

o 0.4 g catalyst particles in atype quartz tube

0 550~650°C

o Flow w/ 10%Qbal. He for Jhr

o Flow w/ reactant of CHO,/N,/H, at 60%/10%/20%/10%espectively, or different ratios
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Summary of C

Catalyst Best Results

Systems Operating T, %, Conversion| % Selectivity Productivity,
°C mol/kg-cat-hr

8.1% 88% Ethane
#2 74.5% CO/H
0 .
600 23.9% 24.1% CO 11.3
650 5.8% 02.8 C* 1.4
#3
750 24.1% 88.6 C* 11.8
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